

YMCA Awards

Level 3 Applied anatomy and physiology 2018

Level 3 Applied anatomy and physiology

Posture and core stability

Learning outcomes

By the end of this session you will be able to:

- Define optimal posture
- Identify the causes of postural deviations
- Identify the structure and function of the:
 - stabilising ligaments and muscles of the spine
 - core and pelvic floor muscles
- Differentiate between local (deep) and global (superficial) muscles that support posture

Learning outcomes

By the end of this session you will be able to:

- Explain 'local' core muscular changes that can occur due to poor postural awareness/stability
- Identify medical conditions & spinal disorders that can occur as a result of postural deviations
- Describe the impact of core stabilisation exercise on posture and the potential for injury/aggravation of problems
- Clarify when stretching & strengthening protocols should be used to improve postural deviations

Optimal posture

'the arrangement of body parts in a state of balance'

'the body can carry its weight and that of gravity with minimal muscular effort and limited joint compression and shearing forces through the body'

The importance of optimal posture

- A solid foundation for all movements
- Optimal biomechanical efficiency
- Balance between the right and left sides and the front and back of the body
- Reduces the risk of muscle dysfunction
- Reduces the risk of injury
- Reduces the risk of degeneration of muscles and joints

Static posture - Alignment when the body is still

Dynamic posture - Alignment when the body is moving (walking, running, lifting)

Neutral spine - The position of the spine in which impact and forces can be absorbed and transferred most effectively

Causes of postural deviations – Birth defects

- Achondroplasia (Lordosis)
- Congenital kyphosis
- Spina bifida (kyphosis)
- Congenital scoliosis

Causes of postural deviations - Environmental/lifestyle factors:

- Poor posture
- Poor diet
- Poor/unsuitable footwear
- Uneven carrying of load
- Pregnancy
- Obesity
- Osteoporosis
- Overuse/underuse of muscles leading to imbalance
- Compensatory patterns due to injury/poor technique

Medical conditions and spinal disorders which may be caused by postural deviations

- Herniated disc
- Facet joint problems
- Scoliosis
- Stenosis
- Arthritis/Osteoarthritis
- Ankylosing Spondylitis
- Spondylolisthesis

Core stability

'Ability to prevent unwanted movement from the body's centre'

Core stability - provided by three different systems:

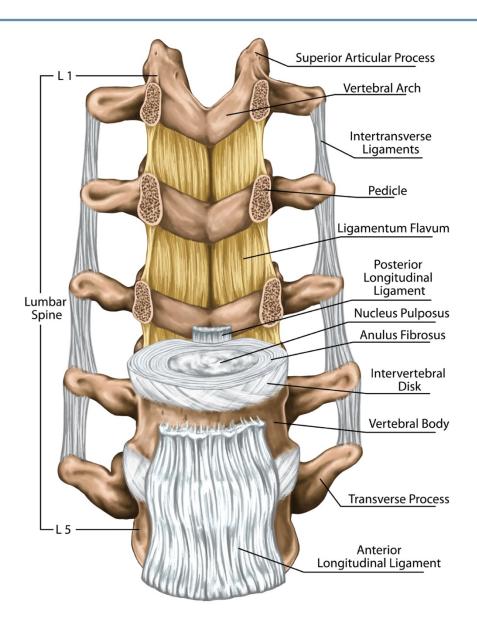
- Passive system Spinal column and spinal ligaments
- Active system Muscular activity (local and global)
- Neural control Feedback from the proprioceptors

The effects of core stabilisation exercise on posture

- Greater coordinated movement neuromuscular efficiency
- Improved balance particularly for the elderly

NB. Traditional strength programmes can further develop postural deviations

Benefits of core stability


- Decreased injury risk
- Improved application of force
- Improved appearance
- Improved balance and motor skills
- Reduced low back pain
- Improved lung efficiency
- Decreased risk of falls in the elderly and frail

Stabilising ligaments of the spine

- Ligamentum flavum
- Anterior longitudinal ligament (ALL)
- Posterior longitudinal ligament (PLL)
- Interspinous ligament
- Supraspinous ligament
- Thoracolumbar fascia (TLF)

Stabilising muscles of the spine and core

- Quadratus lumborum
- Multifidus
- Erector spinae
- Transverse abdominis
- Pelvic floor
- Internal and external obliques
- Diaphragm

Function of core muscles

- Contain and protects the internal organs
- Ensure greater mobility of the spine and trunk
- Stabilise the spine
- Promote optimal posture
- Stabilise the top part of the body over the bottom part
- Control the pelvic-lumbar relationship

Structure of the pelvic floor muscles

- The pelvic floor is a double-layered (deep and part-superficial layer) broad sling of muscle from the pubic bone at the front to the base of the spine at the back of the pelvis
- Comprising the coccygeus and the levator ani.
- It consists of both fast and slow- twitch muscle tissue

Function of the pelvic floor muscles

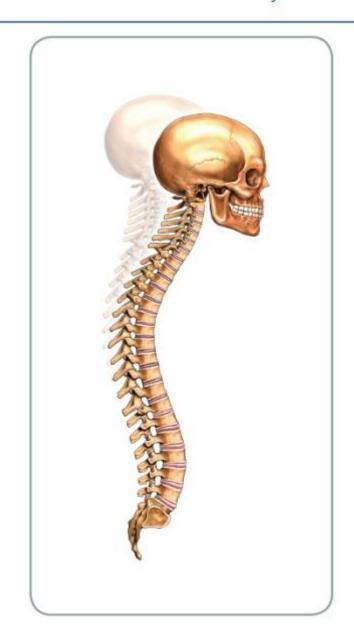
- Stability of the pelvic girdle
- Support for the organs of the pelvis and abdominal contents
- Support for the foetus when pregnant
- Continence control of urine and faeces
- Reflex activity to counteract changes in abdominal pressure (i.e. coughing, sneezing, nose blowing, vomiting and forced expiration)

Muscles that support posture

- Local (deep) muscles are located close to the spine and are recruited prior to gross movement to prevent unwanted movement
- Global (superficial) muscles either prevent or produce a specific joint action

- Local core muscular changes can occur due to poor postural awareness and stability
- Muscle weakness leading to over compensation of other muscles synergistic dominance
- Permanent shortening of overactive muscles

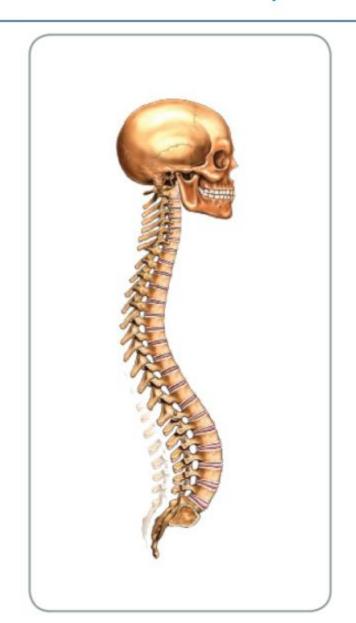
Stretching /strengthening postural deviations



Excessive (hyper) Kyphosis

- Stretching of the pectoralis major
- Stretching of the upper trapezius
- Strengthening of the lower trapezius

Kyphosis

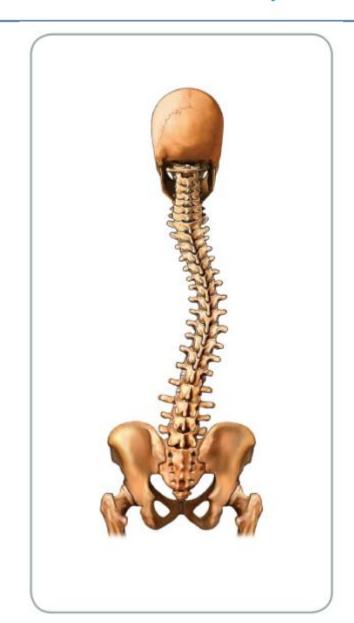


Excessive (hyper) Lordosis

- Stretching of the hip flexor muscles
- Stretching the erector spinae
- Stretching the quadratus lumborum
- Strengthening the hamstrings
- Strengthening the gluteus maximus (in isolation where possible)
- Strengthening the core stabilisers (TVA in particular) and rectus abdominus

Lordosis

Scoliosis


- Unilateral training and stretching
- Do not strengthen one side more than another

Swayback

- Shorten hip flexors
- Encourage 'plumb line' posture bringing hips back to midline.
- This posture tends to be habitual with little muscular imbalance

Scoliosis

Flat-back

- Strengthen lumbar spine through full range extension
- Potentially strengthen hip flexors if there is posterior pelvic tilt present
- Encourage 'plumb-line' posture
- Associated with incorrect movement patterns particularly in bending or lifting
- Can occur after disc injuries

YMCAawards