

ymcaawards.co.uk

YMCA Awards

Level 3 Nutrition to support physical activity 2018

Level 3 Nutrition to support physical activity

Guidelines for different goals

Fat loss

- Creating a calorie deficit
- Reduction in carbohydrate intake to elicit greater fat usage
- Greater level of protein intake to prevent muscle atrophy
- Higher levels of physical activity in particular resistance training and high intensity cardiovascular activity

Hypertrophy

- Creating a calorie surplus
- Increased protein intake to build and repair damaged tissue
- Maintaining carbohydrate intake in order for insulin to transport glucose and amino acids to the muscles

Sports performance

- Sport dependant
- Possible alterations to diet include:
- Carbohydrate restriction
- Carbohydrate loading
- High protein diets
- Calorie surplus for gaining size
- Calorie deficit for reducing weight (sports dependent on 'making weight')

Muscle gain

There are several factors that will determine the amount of lean muscle gain achievable:

- Genetics
- Somatotype
- Hormone levels
- Training
- Recovery
- Nutrition

How much lean muscle gain can a client expect to gain?

Achievable lean muscle tissue gains are approximately 0.5 – 1 Kg per month, if following an effective strength training programme

Dietary considerations for muscle gains

- An increased volume of training will require an increased energy intake
- Approximately 500kcals per day will allow for the increased needs for training and growth
- Energy in excess of your requirements will result in weight gain in the form of fat
- Adequate carbohydrates should be consumed to provide energy for training
- Protein intake should be 1.4 1.8g/kg body weight per day

Endurance exercise

- Protein intake should be 1.2 1.4g/kg body weight per day
- Carbohydrate (glycogen) and fat are the primary fuels for endurance training
- Ensuring adequate intake is essential for any endurance training session
 - Before
 - During
 - After

Before exercise

- Consume a light meal 2 hours before training or a large meal 4 hours before training
- Consume high GI carbohydrates in the 15mins or so just before the start of the session
- For long-duration events, carbohydrate loading ensures maximum glycogen stores prior to the start in order limit the effect of glycogen depletion and fatigue

Carbohydrate loading

Carbohydrate loading involves the following:

- In the week running up to the event the volume of training should decrease
- During this period a high carbohydrate diet should still be consumed
- Aim to consume 7–12g/kg body weight of carbohydrate
- The combination of reduced training plus a consistently high carb intake leads to maximal glycogen stores

During exercise

- For events lasting longer than 90 minutes, performance will be considerably enhanced if 25-30g of carbohydrate is taken in every 15-30 minutes (beginning at 90minutes)
- High GI carbohydrates are recommended because blood sugar and glycogen are being used immediately
- Signs and symptoms of glycogen depletion

After exercise

- Replenish glycogen stores as soon as possible after exercise
- Aim to consume 1g/kg bodyweight of high GI carbohydrate, either as a drink or as a snack, such as dried fruit or rice cakes
- It is advantageous here to choose carbohydrate sources with a high GI so that carbohydrate is delivered to the empty muscle and liver cells as quickly as possible
- A larger meal can be eaten within the next two hours
- It will take 17-20 hours to re-establish glycogen stores after a bout of glycogen depleting exercise

Recommended carbohydrate

- Replenish glycogen stores as soon as possible after exercise
- Aim to consume 1g/kg bodyweight of high GI carbohydrate, either as a drink or as a snack, such as dried fruit or rice cakes
- It is advantageous here to choose carbohydrate sources with a high GI so that carbohydrate is delivered to the empty muscle and liver cells as quickly as possible
- A larger meal can be eaten within the next two hours
- It will take 17-20 hours to re-establish glycogen stores after a bout of glycogen depleting exercise

Recommended carbohydrate intake

Body weight (kg)	Daily carbohydrate need (g)
50	284–340
55	293–351
60	302–363
65	312–373
70	321–385
75	330–396
80	339–407
85	349–418
90	358–430

Hydrate

- For endurance exercise, the other key factor to success is hydration
- Hydration requirements are related to energy expenditure and environmental temperatures

Hydration for endurance exercise

Pre exercise:

Aim to drink 500mls of water in the 2 hours leading up your session. This will allow for adequate hydration

During:

To ensure adequate hydration aim to drink 120 – 180mls every 15 minutes (equivalent to a few sips)

Post exercise:

Aim to replace the fluid you have lost during the session plus half again to account for the thermal effect of exercise

Sports drinks

- Hypotonic and isotonic sports drinks may provide enhanced hydration compared to plain water.
- Hypertonic sports drinks may be useful for replenishing glycogen during and immediately after exercise

