

ymcaawards.co.uk

YMCA Awards

Level 3 Applied anatomy and physiology 2018

Level 3 Applied anatomy and physiology

Learning outcomes

By the end of this session you will be able to:

- Describe the structure of the endocrine system
- Identify the major glands in the endocrine system
- Identify the function of key hormones in the body secreted by endocrine glands
- Describe hormonal responses to training and overtraining

- Comprises a number of glands that produce and secrete hormones
- Hypothalamus (the 'master gland')
 - Controls most of the other endocrine glands in the body

- Works in tandem with the nervous system to maintain homeostasis
 - If the CNS receives information from afferent nerves to show that the body is out of a homeostatic state, efferent nerves may send information to directly stimulate a response, or may send information to an endocrine gland to release a hormone

Regulation of homeostasis is achieved through feedback loops

Feedback loops are either positive or negative

- Negative feedback loop The most common form of feedback loop and the usual means of maintaining homeostasis
- The body detects an internal change and activates mechanisms that reverse that change, for example, the stimulation of the pancreas to secrete insulin in response to high blood glucose levels or stimulation of the parathyroid glands to secrete parathyroid hormone when blood calcium levels are low

- Positive feedback loops These are less common and rather than reversing a change will activate responses that speed up a detected change
- An example of this is the action of oestrogen during the menstrual cycle. Oestrogen released by the ovaries stimulates other endocrine glands to secret hormones that further increase levels of oestrogen

ymcaawards.co.uk

Hormone summary

Gland	Location	Main hormone(s)	Actions
Hypothalamus and pituitary	Base of the brain	Growth hormone	 Increases fat metabolism Increases glycogen synthesis Increases blood glucose levels Promotes growth in children and young adults Promotes muscle mass
Adrenals	Top of the kidneys	Adrenaline & noradrenaline (catecholamines)	 Facilitates sympathetic nervous system activity
		Corticosteroids	 Regulates stress and immune responses Control of carbohydrates, fats and protein metabolism
Thyroid	Neck	Thyroxine	 Increases fat metabolism Increases glycogen synthesis Increases blood glucose levels Promotes growth in children and young adults Promotes muscle mass

Hormone summary continued

Gland	Location	Main hormone(s)	Actions
Parathyroid	Neck (behind the thyroid)	Parathyroid hormone	 Controls levels of blood calcium to maintain muscle contraction and nerve impulse transmission
Pancreas	Abdominal cavity close to stomach	Insulin & glucagon	Control blood sugar levels
Ovaries	Pelvic region	Oestrogen & progesterone	Promote feminisation
Testes	Pelvic region	Testosterone	Promote masculinisation

The effects of exercise on the endocrine system

- Increases in testosterone and human growth hormone post resistance training
- Improved insulin sensitivity
- Increases in Insulin growth factor-1
- Greater glucagon production
- Impaired adrenal and growth hormone responses during overtraining